Extensions 1→N→G→Q→1 with N=C22 and Q=C6×A4

Direct product G=N×Q with N=C22 and Q=C6×A4
dρLabelID
A4×C22×C672A4xC2^2xC6288,1041

Semidirect products G=N:Q with N=C22 and Q=C6×A4
extensionφ:Q→Aut NdρLabelID
C221(C6×A4) = C2×A42φ: C6×A4/C2×A4C3 ⊆ Aut C22189+C2^2:1(C6xA4)288,1029
C222(C6×A4) = C6×C22⋊A4φ: C6×A4/C22×C6C3 ⊆ Aut C2236C2^2:2(C6xA4)288,1042
C223(C6×A4) = C3×D4×A4φ: C6×A4/C3×A4C2 ⊆ Aut C22366C2^2:3(C6xA4)288,980

Non-split extensions G=N.Q with N=C22 and Q=C6×A4
extensionφ:Q→Aut NdρLabelID
C22.1(C6×A4) = C6×C42⋊C3φ: C6×A4/C22×C6C3 ⊆ Aut C22363C2^2.1(C6xA4)288,632
C22.2(C6×A4) = C3×C24⋊C6φ: C6×A4/C22×C6C3 ⊆ Aut C22246C2^2.2(C6xA4)288,634
C22.3(C6×A4) = C3×C42⋊C6φ: C6×A4/C22×C6C3 ⊆ Aut C22486C2^2.3(C6xA4)288,635
C22.4(C6×A4) = C3×C23.A4φ: C6×A4/C22×C6C3 ⊆ Aut C22366C2^2.4(C6xA4)288,636
C22.5(C6×A4) = C3×D4.A4φ: C6×A4/C3×A4C2 ⊆ Aut C22484C2^2.5(C6xA4)288,985
C22.6(C6×A4) = C12×SL2(𝔽3)central extension (φ=1)96C2^2.6(C6xA4)288,633
C22.7(C6×A4) = A4×C2×C12central extension (φ=1)72C2^2.7(C6xA4)288,979
C22.8(C6×A4) = C2×C6×SL2(𝔽3)central extension (φ=1)96C2^2.8(C6xA4)288,981
C22.9(C6×A4) = C6×C4.A4central extension (φ=1)96C2^2.9(C6xA4)288,983

׿
×
𝔽