Extensions 1→N→G→Q→1 with N=C22 and Q=C6xA4

Direct product G=NxQ with N=C22 and Q=C6xA4
dρLabelID
A4xC22xC672A4xC2^2xC6288,1041

Semidirect products G=N:Q with N=C22 and Q=C6xA4
extensionφ:Q→Aut NdρLabelID
C22:1(C6xA4) = C2xA42φ: C6xA4/C2xA4C3 ⊆ Aut C22189+C2^2:1(C6xA4)288,1029
C22:2(C6xA4) = C6xC22:A4φ: C6xA4/C22xC6C3 ⊆ Aut C2236C2^2:2(C6xA4)288,1042
C22:3(C6xA4) = C3xD4xA4φ: C6xA4/C3xA4C2 ⊆ Aut C22366C2^2:3(C6xA4)288,980

Non-split extensions G=N.Q with N=C22 and Q=C6xA4
extensionφ:Q→Aut NdρLabelID
C22.1(C6xA4) = C6xC42:C3φ: C6xA4/C22xC6C3 ⊆ Aut C22363C2^2.1(C6xA4)288,632
C22.2(C6xA4) = C3xC24:C6φ: C6xA4/C22xC6C3 ⊆ Aut C22246C2^2.2(C6xA4)288,634
C22.3(C6xA4) = C3xC42:C6φ: C6xA4/C22xC6C3 ⊆ Aut C22486C2^2.3(C6xA4)288,635
C22.4(C6xA4) = C3xC23.A4φ: C6xA4/C22xC6C3 ⊆ Aut C22366C2^2.4(C6xA4)288,636
C22.5(C6xA4) = C3xD4.A4φ: C6xA4/C3xA4C2 ⊆ Aut C22484C2^2.5(C6xA4)288,985
C22.6(C6xA4) = C12xSL2(F3)central extension (φ=1)96C2^2.6(C6xA4)288,633
C22.7(C6xA4) = A4xC2xC12central extension (φ=1)72C2^2.7(C6xA4)288,979
C22.8(C6xA4) = C2xC6xSL2(F3)central extension (φ=1)96C2^2.8(C6xA4)288,981
C22.9(C6xA4) = C6xC4.A4central extension (φ=1)96C2^2.9(C6xA4)288,983

׿
x
:
Z
F
o
wr
Q
<